બે ઉપવલયો ${E_1}:\,\frac{{{x^2}}}{3} + \frac{{{y^2}}}{2} = 1$ અને ${E_2}:\,\frac{{{x^2}}}{16} + \frac{{{y^2}}}{b^2} = 1$ છે જો તેમની ઉત્કેન્દ્રતાનો ગુણાકાર $\frac {1}{2}$ થાય તો ઉપવલય $E_2$ ની ગૌણઅક્ષની લંબાઈ મેળવો.
$8$
$9$
$4$
$2$
ઉપવલય $9 x^{2}+4 y^{2}=36$ માટે નાભિના યામ, શિરોબિંદુઓ, પ્રધાન અક્ષની લંબાઈ, ગૌણ અક્ષની લંબાઈ અને ઉત્કેન્દ્રતા શોધો.
${\text{c}}$ ના જે મુલ્ય માટે $y\, = \,\,\,4x\,\, + \;\,c$ એ વક્ર $\frac{{{x^2}}}{4}\,\, + \;\,{y^2}\, = \,\,1\,\,$ ને સ્પર્શે તો મુલ્યોની સંખ્યા........
${\text{P}}$ એ ઉપવલય $\frac{{{{\text{x}}^{\text{2}}}}}{{{{\text{a}}^{\text{2}}}}}\,\, + \,\,\frac{{{y^2}}}{{{b^2}}}\,\, = \,\,1\,\,$ પરનું બિંદુ છે. જ્યારે $\Delta PSS'\,$ નું ક્ષેત્રફળ મહતમ હોય,ત્યારે $\Delta PSS'$ ($S$ અને $S'$ નાભિઓ) ની અંત: ત્રિજ્યા =.........
રેખા $y=x+1$ એ ઉપવલય $\frac{x^{2}}{4}+\frac{y^{2}}{2}=1$ ને બે બિંદુઓ $P$ અને $Q$ માં મળે છે. જો $P Q$ વ્યાસવાળા વર્તુળની ત્રિજ્યા $r$ હોય, તો $(3 r)^{2}$ = ..............
ઉપવલય $x^{2} + 2y^{2} = 2$ ના કોઈ પણ સ્પર્શકનો અક્ષો વચ્ચે કપાયેલ અંત:ખંડના મધ્યબિંદુનો બિંદુપથ મેળવો.