બે ઉપવલયો ${E_1}:\,\frac{{{x^2}}}{3} + \frac{{{y^2}}}{2} = 1$ અને ${E_2}:\,\frac{{{x^2}}}{16} + \frac{{{y^2}}}{b^2} = 1$ છે જો તેમની ઉત્કેન્દ્રતાનો ગુણાકાર $\frac {1}{2}$ થાય તો ઉપવલય $E_2$ ની ગૌણઅક્ષની લંબાઈ મેળવો.
$8$
$9$
$4$
$2$
ઉપવલયની બે નાભિ વચ્ચેનું અંતર $6$ તથા તેની ગૈાણ અક્ષની લંબાઇ $8 $ હોય તો $e$ મેળવો.
જો ઉપવલય $\frac{{{x^2}}}{{{a^2}}}\,\, + \;\,\frac{{{y^2}}}{{{b^2}}}\,\, = \,\,1$ નો કોઈપણ સ્પર્શક અક્ષો પર $h$ અને $k$ લંબાઈનો અંત:ખંડ કાપે, તો.....
ધારો કે કોઈક ઉપવલય $\frac{x^{2}}{ a ^{2}}+\frac{y^{2}}{ b ^{2}}=1, a > b$ ની ઉત્કેન્દ્રતા $\frac{1}{4}$ છે. જો આ ઉપવલય,બિંદુ $\left(-4 \sqrt{\frac{2}{5}}, 3\right)$ માંથી પસાર થતો હોય તો,$a^{2}+b^{2}=\dots\dots\dots$
જો $L$ એ પરવલય $y^{2}=4 x-20$ નો બિંદુ $(6,2)$ આગળનો સ્પર્શક છે. જો $L$ એ ઉપવલય $\frac{ x ^{2}}{2}+\frac{ y ^{2}}{ b }=1$ નો પણ સ્પર્શક હોય તો $b$ ની કિમંત મેળવો.
જો $P_1$ અને $P_2$ એ ઉપવલય $\frac{{{x^2}}}{4} + {y^2} = 1$ ના બે ભિન્ન બિંદુઓ છે જ્યાં તે બિંદુઓ આગળનો સ્પર્શક બિંદુ $(0, 1)$ અને $(2, 0)$ ને જોડતી જીવાને સમાંતર હોય તો બિંદુ $P_1$ અને $P_2$ વચ્ચેનું અંતર ......... થાય